СК Энергоресурс
СК Энергоресурс
Блог компании СК Энергоресурс

ПУЭ Раздел 2. Канализация электроэнергии Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ. 2.5.48-2.5.85

Климатические условия и нагрузки

2.5.48. Нормативная ветровая нагрузка при гололеде на провод (трос) определяется по 2.5.52 с учетом условной толщины стенки гололеда bу, которая принимается по региональному районированию ветровых нагрузок при гололеде или рассчитывается согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений bу=bэ.

2.5.49. Толщина стенки гололеда (bэ, bу) на проводах ВЛ определяется на высоте расположения приведенного центра тяжести всех проводов, на тросах – на высоте расположения центра тяжести тросов. Высота приведенного центра тяжести проводов и тросов определяется в соответствии с 2.5.44.

Толщина стенки гололеда на проводах (тросах) при высоте расположения приведенного их центра тяжести более 25 м определяется умножением ее значения на коэффициенты Ki и Kd , принимаемые по табл.2.5.4. При этом исходную толщину стенки гололеда (для высоты 10 м и диаметра 10 мм) следует принимать без увеличения, предусмотренного 2.5.47. Полученные значения толщины стенки гололеда округляются до 1 мм.

Таблица 2.5.4. Коэффициенты Ki и Kd, учитывающие изменение толщины стенки гололеда.
Примечание. Для промежуточных высот и диаметров значения коэффициентов Ki и Kd определяются линейной интерполяцией.

При высоте расположения приведенного центра тяжести проводов или тросов до 25 м поправки на толщину стенки гололеда на проводах и тросах в зависимости от высоты и диаметра проводов и тросов не вводятся.

2.5.50. Для участков ВЛ, сооружаемых в горных районах по орографически защищенным извилистым и узким склоновым долинам и ущельям, независимо от высот местности над уровнем моря, нормативную толщину стенки гололеда bэ рекомендуется принимать не более 15 мм. При этом не следует учитывать коэффициент Ki .

2.5.51. Температуры воздуха – среднегодовая, низшая, которая принимается за абсолютно минимальную, высшая, которая принимается за абсолютно максимальную, – определяются по строительным нормам и правилам и по данным наблюдений с округлением до значений, кратных пяти.

Температуру воздуха при нормативном ветровом давлении W0 следует принимать равной минус 5 °C, за исключением районов со среднегодовой температурой минус 5 °C и ниже, для которых ее следует принимать равной минус 10 °C.

Температуру воздуха при гололеде для территории с высотными отметками местности до 1000 м над уровнем моря следует принимать равной минус 5 °C, при этом для районов со среднегодовой температурой минус 5°C и ниже температуру воздуха при гололеде следует принимать равной минус 10 °C. Для горных районов с высотными отметками выше 1000 м и до 2000 м температуру следует принимать равной минус 10 °C, более 2000 м – минус 15 °C. В районах, где при гололеде наблюдается температура ниже минус 15 °C, ее следует принимать по фактическим данным.

2.5.52. Нормативная ветровая нагрузка на провода и тросы Pwн, действующая перпендикулярно проводу (тросу), для каждого рассчитываемого условия определяется по формуле
Формула определения нормативной ветровой нагрузки на провода и тросы, действующая перпендикулярно проводу (тросу)
где αw – коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ, принимаемый равным:
Промежуточные значения αw определяются линейной интерполяцией;

Kl – коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 – при 100 м, 1,05 – при 150 м, 1,0 – при 250 м и более (промежуточные значения Kl определяются интерполяцией);

Kw – коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности, определяемый по табл.2.5.2;

Cx – коэффициент лобового сопротивления, принимаемый равным: 1,1 – для проводов и тросов, свободных от гололеда, диаметром 20 мм и более; 1,2 – для всех проводов и тросов, покрытых гололедом, и для всех проводов и тросов, свободных от гололеда, диаметром менее 20 мм;

W – нормативное ветровое давление, Па, в рассматриваемом режиме:

W=W0 – определяется по табл.2.5.1 в зависимости от ветрового района;

W=Wг – определяется по 2.5.43;

F – площадь продольного диаметрального сечения провода, м2 (при гололеде с учетом условной толщины стенки гололеда bу);

φ – угол между направлением ветра и осью ВЛ.

Площадь продольного диаметрального сечения провода (троса) F определяется по формуле, м2
Формула определения площади продольного диаметрального сечения провода(троса)
где d – диаметр провода, мм;

Ki и Kd – коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и определяемые по табл.2.5.4;

bу – условная толщина стенки гололеда, мм, принимается согласно 2.5.48;

l – длина ветрового пролета, м.

2.5.53. Нормативная линейная гололедная нагрузка на 1 м провода и трос Pгн определяется по формуле, Н/м
где Ki и Kdкоэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и принимаемые по табл.2.5.4;

bэ – толщина стенки гололеда, мм, по 2.5.46;

d – диаметр провода, мм;

ρ – плотность льда, принимаемая равной 0,9 г/см3;

g – ускорение свободного падения, принимаемое равным 9,8 м/с2.

2.5.54. Расчетная ветровая нагрузка на провода (тросы) Pwн при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н
Формула определения расчетной ветровой нагрузки на провода (тросы)
где Pwн – нормативная ветровая нагрузка по 2.5.52;

Υnw – коэффициент надежности по ответственности, принимаемый равным: 1,0 - для ВЛ до 220 кВ; 1,1 - для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υp – региональный коэффициент, принимаемый от 1 до 1,3. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υf – коэффициент надежности по ветровой нагрузке, равный 1,1.

2.5.55. Расчетная линейная гололедная нагрузка на 1 м провода (троса) Pг.п при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н/м
Формула определения расчетной линейной гололедной нагрузки на 1 м провода (троса)
где Pгн – нормативная линейная гололедная нагрузка, принимаемая по 2.5.53;

Υnw – коэффициент надежности по ответственности, принимаемый равным: 1,0 – для ВЛ до 220 кВ; 1,3 – для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υp – региональный коэффициент, принимаемый равным от 1 до 1,5. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υf – коэффициент надежности по гололедной нагрузке, равный 1,3 для районов по гололеду I и II; 1,6 - для районов по гололеду III и выше;

Υd – коэффициент условий работы, равный 0,5.

2.5.56. При расчете приближений токоведущих частей к сооружениям, насаждениям и элементам опор расчетная ветровая нагрузка на провода (тросы) определяется по 2.5.54.

2.5.57. При определении расстояний от проводов до поверхности земли и до пересекаемых объектов и насаждений расчетная линейная гололедная нагрузка на провода принимается по 2.5.55.

2.5.58. Нормативная ветровая нагрузка на конструкцию опоры определяется как сумма средней и пульсационной составляющих.

2.5.59. Нормативная средняя составляющая ветровой нагрузки на опору Qcн определяется по формуле, Н
Формула определения нормативной средней составляющей ветровой нагрузки на опору
где Kw – принимается по 2.5.44; W – принимается по 2.5.52; Cx – аэродинамический коэффициент, определяемый в зависимости от вида конструкции, согласно строительным нормам и правилам;

A – площадь проекции, ограниченная контуром конструкции, ее части или элемента с наветренной стороны на плоскость перпендикулярно ветровому потоку, вычисленная по наружному габариту, м2.

Для конструкций опор из стального проката, покрытых гололедом, при определении A учитывается обледенение конструкции с толщиной стенки гололеда bу при высоте опор более 50 м, а также для районов по гололеду V и выше независимо от высоты опор.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб обледенение конструкций при определении нагрузки Qcн не учитывается.

2.5.60. Нормативная пульсационная составляющая ветровой нагрузки* Qпн для опор высотой до 50 м принимается:

для свободностоящих одностоечных стальных опор:
Нормативная пульсационная составляющая ветровой нагрузки для опор высотой до 50 м для свободностоящих одностоечных стальных опор
для свободностоящих портальных стальных опор:
Нормативная пульсационная составляющая ветровой нагрузки для опор высотой до 50 м для свободностоящих портальных стальных опор
для свободностоящих железобетонных опор (портальных и одностоечных) на центрифугированных стойках:
Нормативная пульсационная составляющая ветровой нагрузки для опор высотой до 50 м для свободностоящих железобетонных опор (портальных и одностоечных) на центрифугированных стойках
для свободностоящих одностоечных железобетонных опор ВЛ до 35 кВ:
Нормативная пульсационная составляющая ветровой нагрузки для опор высотой до 50 м для свободностоящих одностоечных железобетонных опор ВЛ до 35 кВ
для стальных и железобетонных опор с оттяжками при шарнирном креплении к фундаментам:
Нормативная пульсационная составляющая ветровой нагрузки для опор высотой до 50 м
Нормативное значение пульсационной составляющей ветровой нагрузки для свободностоящих опор высотой более 50 м, а также для других типов опор, не перечисленных выше, независимо от их высоты определяется в соответствии со строительными нормами и правилами на нагрузки и воздействия.

В расчетах деревянных опор пульсационная составляющая ветровой нагрузки не учитывается.

2.5.61. Нормативная гололедная нагрузка на конструкции металлических опор Jн определяется по формуле, Н
где Ki, bэ, ρ, g – принимаются согласно 2.5.53;

μr, – коэффициент, учитывающий отношение площади поверхности элемента, подверженной обледенению, к полной поверхности элемента и принимаемый равным:

0,6 – для районов по гололеду до IV при высоте опор более 50 м и для районов по гололеду V и выше, независимо от высоты опор;

A0 – площадь общей поверхности элемента, м2.

Для районов по гололеду до IV при высоте опор менее 50 м гололедные отложения на опорах не учитываются.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб гололедные отложения не учитываются.

Гололедные отложения на траверсах рекомендуется определять по вышеприведенной формуле с заменой площади общей поверхности элемента на площадь горизонтальной проекции консоли траверсы.

2.5.62. Расчетная ветровая нагрузка на провода (тросы), воспринимаемая опорами, определяется по формуле, Н
где
– нормативная ветровая нагрузка по 2.5.52;
– принимается согласно 2.5.54;
– коэффициент надежности по ветровой нагрузке, равный для проводов (тросов), покрытых гололедом и свободных от гололеда:

1,3 – при расчете по первой группе предельных состояний;

1,1 – при расчете по второй группе предельных состояний.

2.5.63. Расчетная ветровая нагрузка на конструкцию опоры Q, Н, определяется по формуле
Формула расчета ветровой нагрузки на конструкцию опоры
где Qнc – нормативная средняя составляющая ветровой нагрузки, принимаемая по 2.5.59;

Qнп – нормативная пульсационная составляющая ветровой нагрузки, принимаемая по 2.5.60;

Υnw, Υp – принимаются согласно 2.5.54;

Υf – коэффициент надежности по ветровой нагрузке, равный:

1,3 – при расчете по первой группе предельных состояний;

1,1 – при расчете по второй группе предельных состояний.

2.5.64. Расчетная ветровая нагрузка на гирлянду изоляторов Pи, Н, определяется по формуле
Формула расчета ветровой нагрузки на гирлянду изоляторов
где Υnw, Υp – принимаются согласно 2.5.54;

Kw принимается согласно 2.5.44;

Cx – коэффициент лобового сопротивления цепи изоляторов, принимаемый равным 1,2;

Υf – коэффициент надежности по ветровой нагрузке, равный 1,3;

W0 – нормативное ветровое давление (см. 2.5.41);

Fи площадь диаметрального сечения цепи гирлянды изоляторов, м2, определяется по формуле
Формула определения площади диаметрального сечения цепи гирлянды изоляторов
где Dи – диаметр тарелки изоляторов, мм;

Ни – строительная высота изолятора, мм;

n – число изоляторов в цепи;

N – число цепей изоляторов в гирлянде.

2.5.65. Расчетная линейная гололедная нагрузка на 1 м провода (троса) 00000, Н/м, воспринимаемая опорами, определяется по формуле
Формула расчета линейной гололедной нагрузки на 1 м провода (троса)
где Pгн – нормативная линейная гололедная нагрузка, принимается по 2.5.53;

Υ, Υp – принимаются согласно 2.5.55;

Υf – коэффициент надежности по гололедной нагрузке при расчете по первой и второй группам предельных состояний, принимается равным 1,3 для районов по гололеду I и II; 1,6 для районов по гололеду III и выше;

Υd – коэффициент условий работы, равный:

1,0 – при расчете по первой группе предельных состояний;

0,5 – при расчете по второй группе предельных состояний.

2.5.66. Гололедная нагрузка от проводов и тросов, приложенная к точкам их крепления на опорах, определяется умножением соответствующей линейной гололедной нагрузки (2.5.53, 2.5.55, 2.5.65) на длину весового пролета.

2.5.67. Расчетная гололедная нагрузка на конструкции опор J, Н, определяется по формуле
Формула расчета гололедной нагрузки на конструкции опор
где Jн – нормативная гололедная нагрузка, принимаемая по 2.5.61;

Υ, Υp– принимаются согласно 2.5.55;

Υf , Υd – принимаются согласно 2.5.65.

2.5.68. В районах по гололеду III и выше обледенение гирлянд изоляторов учитывается увеличением их веса на 50%. В районах по гололеду II и менее обледенение не учитывается.

Воздействие ветрового давления на гирлянды изоляторов при гололеде не учитывается.

2.5.69. Расчетная нагрузка на опоры ВЛ от веса проводов, тросов, гирлянд изоляторов, конструкций опор по первой и второй группам предельных состояний определяется при расчетах как произведение нормативной нагрузки на коэффициент надежности по весовой нагрузке Υf , принимаемый равным для проводов, тросов и гирлянд изоляторов 1,05, для конструкций опор – с указаниями строительных норм и правил на нагрузки и воздействия.

2.5.70. Нормативные нагрузки на опоры ВЛ от тяжения проводов и тросов определяются при расчетных ветровых и гололедных нагрузках по 2.5.54 и 2.5.55.

Расчетная горизонтальная нагрузка от тяжения проводов и тросов, Tmax, свободных от гололеда или покрытых гололедом, при расчете конструкций опор, фундаментов и оснований определяется как произведение нормативной нагрузки от тяжения проводов и тросов на коэффициент надежности по нагрузке от тяжения равный:

1,3 – при расчете по первой группе предельных состояний;

1,0 – при расчете по второй группе предельных состояний.

2.5.71. Расчет ВЛ по нормальному режиму работы необходимо производить для сочетания следующих условий:

1. Высшая температура t+, ветер и гололед отсутствуют.

2. Низшая температура t-, ветер и гололед отсутствуют.

3. Среднегодовая температура tсг, ветер и гололед отсутствуют.

4. Провода и тросы покрыты гололедом по 2.5.55, температура при гололеде по 2.5.51, ветер отсутствует.

5. Ветер по 2.5.54, температура при W0 по 2.5.51, гололед отсутствует.

6. Провода и тросы покрыты гололедом по 2.5.55, ветер при гололеде на провода и тросы по 2.5.54, температура при гололеде по 2.5.51.

7. Расчетная нагрузка от тяжения проводов по 2.5.70.

2.5.72. Расчет ВЛ по аварийному режиму работы необходимо производить для сочетания следующих условий:

1. Среднегодовая температура tсг, ветер и гололед отсутствуют.

2. Низшая температура t-, ветер и гололед отсутствуют.

3. Провода и тросы покрыты гололедом по 2.5.55, температура при гололеде по 2.5.51, ветер отсутствует.

4. Расчетная нагрузка от тяжения проводов по 2.5.70.

2.5.73. При расчете приближения токоведущих частей к кронам деревьев, элементам опор ВЛ и сооружениям необходимо принимать следующие сочетания климатических условий:

1) при рабочем напряжении: расчетная ветровая нагрузка по 2.5.54, температура при W0 по 2.5.51, гололед отсутствует;

2) при грозовых и внутренних перенапряжениях: температура +15 °С, ветровое давление, равное 0,06 W0, но не менее 50 Па;

3) для обеспечения безопасного подъема на опору при наличии напряжения на линии: для ВЛ 500 кВ и ниже – температура минус 15 °c, гололед и ветер отсутствуют; для ВЛ 750 кВ – температура минус 15 deg;c, ветровое давление 50 Па, гололед отсутствует.

При расчете приближений угол отклонения Υ поддерживающей гирлянды изоляторов от вертикали определяется по формуле
Формула расчета угла отклонения поддерживающей гирлянды изоляторов от вертикали
где P – расчетная ветровая нагрузка на провода фазы, направленная поперек оси ВЛ (или по биссектрисе угла поворота ВЛ), Н;

Kg – коэффициент инерционности системы «гирлянда – провод в пролете», при отклонениях под давлением ветра принимается равным:
Промежуточные значения определяются линейной интерполяцией;

P0 – горизонтальная составляющая от тяжения проводов на поддерживающую гирлянду промежуточно-угловой опоры (принимаемая со знаком плюс, если ее направление совпадает с направлением ветра, и со знаком минус, если она направлена в наветренную сторону), Н;

Gпр – расчетная нагрузка от веса провода, воспринимаемая гирляндой изоляторов, Н;

Gг – расчетная нагрузка от веса гирлянды изоляторов, Н;

Pи – расчетная ветровая нагрузка на гирлянды изоляторов, Н, принимаемая по 2.5.64.

2.5.74. Проверку опор ВЛ по условиям монтажа необходимо производить по первой группе предельных состояний на расчетные нагрузки при следующих климатических условиях: температура минус 15 °C, ветровое давление на высоте 15 м над поверхностью земли 50 Па, гололед отсутствует.

Провода и грозозащитные тросы

2.5.75. Воздушные линии могут выполняться с одним или несколькими проводами в фазе, во втором случае фаза называется расщепленной.

Провода расщепленной фазы могут быть изолированы друг от друга.

Диаметр проводов, их сечение и количество в фазе, а также расстояние между проводами расщепленной фазы определяются расчетом.

2.5.76. На проводах расщепленной фазы в пролетах и петлях анкерных опор должны быть установлены дистанционные распорки. Расстояния между распорками или группами распорок, устанавливаемыми в пролете на расщепленной фазе из двух или трех проводов, не должны превышать 60 м, а при прохождении ВЛ по местности типа А (2.5.6) – 40 м. Расстояния между распорками или группами распорок, устанавливаемыми в пролете на расщепленной фазе из четырех и более проводов, не должны превышать 40 м. При прохождении ВЛ по местности типа С эти расстояния допускается увеличивать до 60 м.

2.5.77. На ВЛ должны применяться многопроволочные провода и тросы. Минимально допустимые сечения проводов приведены в табл.2.5.5.

Таблица 2.5.5. Минимально допустимые сечения проводов по условиям механической прочности.
Примечания: 1. В пролетах пересечений с автомобильными дорогами, троллейбусными и трамвайными линиями, железными дорогами необщего пользования допускается применение проводов таких же сечений, как на ВЛ без пересечений.

2. В районах, где требуется применение проводов с антикоррозионной защитой, минимально допустимые сечения проводов принимаются такими же, как и сечения соответствующих марок без антикоррозионной защиты.

2.5.78. Для снижения потерь электроэнергии на перемагничивание стальных сердечников в сталеалюминиевых проводах и в проводах из термообработанного алюминиевого сплава со стальным сердечником рекомендуется применять провода с четным числом повивов алюминиевых проволок.

2.5.79. В качестве грозозащитных тросов следует, как правило, применять стальные канаты, изготовленные из оцинкованной проволоки для особо жестких агрессивных условий работы (ОЖ) и по способу свивки нераскручивающиеся (Н) сечением не менее:

  • 35 мм2 – на ВЛ 35 кВ без пересечений;
  • 35 мм2 – на ВЛ 35 кВ в пролетах пересечений с железными дорогами общего пользования и электрифицированными в районах по гололеду I-II;
  • 50 мм2 – в остальных районах и на ВЛ, сооружаемых на двухцепных и многоцепных опорах;
  • 50 мм2 – на ВЛ 110-150 кВ;
  • 70 мм2 – на ВЛ 220 кВ и выше.

Сталеалюминиевые провода или провода из термообработанного алюминиевого сплава со стальным сердечником в качестве грозозащитного троса рекомендуется применять:

1) на особо ответственных переходах через инженерные сооружения (электрифицированные железные дороги, автомобильные дороги категории IA (2.5.256), судоходные водные преграды и т.п.);

2) на участках ВЛ, проходящих в районах с повышенным загрязнением атмосферы (промышленные зоны с высокой химической активностью уносов, зоны интенсивного земледелия с засоленными почвами и водоемами, побережья морей и т.п.), а также проходящих по населенной и труднодоступной местностям;

3) на ВЛ с большими токами однофазного короткого замыкания по условиям термической стойкости и для уменьшения влияния ВЛ на линии связи.

При этом для ВЛ, сооружаемых на двухцепных или многоцепных опорах, независимо от напряжения суммарное сечение алюминиевой (или алюминиевого сплава) и стальной частей троса должно быть не менее 120 мм2.

При использовании грозозащитных тросов для организации многоканальных систем высокочастотной связи при необходимости применяются одиночные или сдвоенные изолированные друг от друга тросы или тросы со встроенным оптическим кабелем связи (2.5.178-2.5.200). Между составляющими сдвоенного троса в пролетах и петлях анкерных опор должны быть установлены дистанционные изолирующие распорки.

Расстояния между распорками в пролете не должны превышать 40 м.

2.5.80. Для сталеалюминиевых проводов с площадью поперечного сечения алюминиевых проволок А и стальных проволок С рекомендуются следующие области применения:

1) районы с толщиной стенки гололеда 25 мм и менее:

  • А до 185 мм2 – при отношении А/С от 6,0 до 6,25;
  • А от 240 мм2 и более – при отношении А/С более 7,71;

2) районы с толщиной стенки гололеда более 25 мм:

  • А до 95 мм2 – при отношении А/С 6,0;
  • А от 120 до 400 мм2– при отношении А/С от 4,29 до 4,39;
  • А от 450 мм2 и более – при отношении А/С от 7,71 до 8,04;

3) на больших переходах с пролетами более 700 м – отношение А/С более 1,46.

  • Выбор марок проводов из других материалов обосновывается расчетами.

При сооружении ВЛ в местах, где опытом эксплуатации установлено разрушение проводов от коррозии (побережья морей, соленых озер, промышленные районы и районы засоленных песков, прилежащие к ним районы с атмосферой воздуха типа II и III, а также в местах, где на основании данных изысканий возможны такие разрушения, следует применять провода, которые в соответствии с государственными стандартами и техническими условиями предназначены для указанных условий.

На равнинной местности при отсутствии данных эксплуатации ширину прибрежной полосы, к которой относится указанное требование, следует принимать равной 5 км, а полосы от химических предприятий – 1,5 км.

2.5.81. При выборе конструкции ВЛ, количества составляющих и площади сечения проводов фазы и их расположения необходимо ограничение напряженности электрического поля на поверхности проводов до уровней, допустимых по короне и радиопомехам (см. гл.1.3).

По условиям короны и радиопомех при отметках до 1000 м над уровнем моря рекомендуется применять на ВЛ провода диаметром не менее указанных в табл.2.5.6.

Таблица 2.5.6. Минимальный диаметр проводов ВЛ по условиям короны и радиопомех, мм.
Примечания: 1. Для ВЛ 220 кВ минимальный диаметр провода 21,6 мм относится к горизонтальному расположению фаз, а в остальных случаях допустим с проверкой по радиопомехам.

2. Для ВЛ 330 кВ минимальный диаметр провода 15,2 мм (три провода в фазе) относится к одноцепным опорам.

При отметках более 1000 м над уровнем моря для ВЛ 500 кВ и выше рекомендуется рассматривать целесообразность изменения конструкции средней фазы по сравнению с крайними фазами.

2.5.82. Сечение грозозащитного троса, выбранное по механическому расчету, должно быть проверено на термическую стойкость в соответствии с указаниями гл.1.4 и 2.5.193, 2.5.195, 2.5.196.

2.5.83. Провода и тросы должны рассчитываться на расчетные нагрузки нормального, аварийного и монтажного режимов ВЛ для сочетаний условий, указанных в 2.5.71-2.5.74.

При этом напряжения в проводах (тросах) не должны превышать допустимых значений, приведенных в табл.2.5.7.

Таблица 2.5.7. Допустимое механическое напряжение в проводах и тросах ВЛ напряжением выше 1 кВ.
Указанные в табл.2.5.7 напряжения следует относить к той точке провода на длине пролета, в которой напряжение наибольшее. Допускается указанные напряжения принимать для низшей точки провода при условии превышения напряжения в точках подвеса не более 5%.

2.5.84. Расчет монтажных напряжений и стрел провеса проводов (тросов) должен выполняться с учетом остаточных деформаций (вытяжки). В механических расчетах проводов (тросов) следует принимать физико-механические характеристики, приведенные в табл.2.5.8.

Таблица 2.5.8. Физико-механические характеристики проводов и тросов.
* Предел прочности при растяжении Qp определяется отношением разрывного усилия провода (троса) Pp, нормированного государственным стандартом или техническими условиями, к площади поперечного сечения Sп, σp=Pp/Sп. Для сталеалюминиевых проводов Sп=SА/SС.

** Принимается по соответствующим стандартам, но не менее 1200 Н/мм2.

2.5.85. Защищать от вибрации следует: одиночные провода и тросы при длинах пролетов, превышающих значения, приведенные в табл.2.5.9, и механических напряжениях при среднегодовой температуре, превышающих приведенные в табл.2.5.10;

Таблица 2.5.9. Длины пролетов для одиночных проводов и тросов, требующих защиты от вибрации.
* Приведены площади сечения алюминиевой части.

Таблица 2.5.10. Механические напряжения, Н/мм2, одиночных проводов и тросов при среднегодовой температуре tсг, требующих защиты от вибрации.
  • расщепленные провода и тросы из двух составляющих при длинах пролетов, превышающих 150 м, и механических напряжениях, превышающих приведенные в табл.2.5.11;

Таблица 2.5.11. Механические напряжения, Н/мм2, расщепленных проводов и тросов из двух составляющих, при среднегодовой температуре tсг, требующих защиты от вибрации.
  • провода расщепленной фазы из трех и более составляющих при длинах пролетов, превышающих 700 м;
  • провода ВЛЗ при прохождении трассы на местности типа А, если напряжение в проводе при среднегодовой температуре превышает 40 Н/мм2.

В табл.2.5.9, 2.5.10 и 2.5.11 тип местности принимается согласно 2.5.6.

При длинах пролетов менее указанных в табл.2.5.9 и в местности типа С защита от вибрации не требуется. Защищать от вибрации рекомендуется:

  • провода алюминиевые и из нетермообработанного алюминиевого сплава площадью сечения до 95 мм2, из термообработанного алюминиевого сплава и сталеалюминиевые провода площадью сечения алюминиевой части до 70 мм2, стальные тросы площадью сечения до 35 мм2 – гасителями вибрации петлевого типа (демпфирующие петли) или армирующими спиральными прутками, протекторами, спиральными вязками;
  • провода (тросы) большего сечения – гасителями вибрации типа Стокбриджа;
  • провода ВЛЗ в местах их крепления к изоляторам – гасителями вибрации спирального типа с полимерным покрытием.

Гасители вибрации следует устанавливать с обеих сторон пролета.

Для ВЛ, проходящих в особых условиях (районы Крайнего Севера, орографически незащищенные выходы из горных ущелий, отдельные пролеты в местности типа С и др.), защита от вибрации должна производиться по специальному проекту.

Защита от вибрации больших переходов выполняется согласно 2.5.163.
Источник: https://www.elec.ru/library/direction/pue
Стандарты